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Chaos from a hysteresis and switched circuit

By TOSHIMICHI SAITO AND SHINJI NAKAGAWA
EE Dept, HOSEI University, Tokyo 184, Japan

This paper considers a simple piecewise linear hysteresis circuit. We define one-
dimensional return map and derive its analytic formula. It enables us to give a
sufficient condition for chaos generation and to analyse bifurcation phenomena rig-
orously. Especially, we have discovered period-doubling bifurcation with symmetry
breaking. Some of theoretical results are verified by laboratory measurements.

1. Introduction

Analysis of chaos and related bifurcations is an important nonlinear problem (see
Ott 1993 and references therein). In the analysis, piecewise linear (PWL) circuits are
useful tools because both theoretical and laboratory approaches are relatively easy.
There are interesting results on three-dimensional pwL autonomous chaotic circuits,
e.g. the analysis of Shil’nikov’s chaos and related bifurcation (Chua et al. 1986; Chua
et al. 1993). Also, control and synchronization of chaos are hot topics for engineering
applications of chaos (Ott et al- 1990; Ogorzatek 1993; Pecora et al. 1990; Hasler et
al. 1993). Chaos seems to play an important role for efficient information processor,
communication system and so on.

This paper considers chaos and fundamental bifurcations from a simple PwL hys-
teresis and switched circuit. Basically, the circuit dynamics are described by a three-
dimensional constrained equation (Saito 1985) and in an idealized case, it is described
by two linear two-dimensional equations connected to each other by hysteresis switch-
ings. Then we define one-dimensional return map and give its analytic formula. Using
this return map, we can give a sufficient condition for chaos generation, where chaos
is characterized by ergodicity (Li et al. 1978) and positive Lyapunov exponent. Rig-
orous proof of chaos generation in this sense is hard for usual three-dimensional
autonomous systems. In the phase space, chaotic attractor exhibits single or double-
screw form. We also analyse fundamental bifurcation phenomena for periodic window
that is usually born via tangent bifurcation and is to be chaotic via period-doubling
cascade. Then it disappears via crisis (Ott 1993). Using an analytic equation, we
give parameter sets for tangent bifurcation, period-doubling bifurcation and crisis.
Especially, the first period doubling in the return map corresponds to symmetry
breaking of attractor in the phase space. It changes the number of attractors from
one to two. Moreover, complicated domain of attraction and classification of chaos
are considered. Some of theoretical results are verified by laboratory experiments.
We have published some works on hysteresis chaos generators (Newcomb et al. 1984;
Saito 1984, 1990; Saito et al. 1994; Suzuki et al. 1994) and this paper provides a
developed version of the three-dimensional case.
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Figure 1. Hysteresis chaos generator.

2. Circuit and return map

Figure 1 shows the chaos generator. In this figure, the left op amp realizes a
linear negative resistor characterized by v, = —r(—i). Basically, it is a three-segment
current controlled resistor and we use only its central region. The right op amp
realizes another current controlled resistor characterized by

Rip + E, for ip < —(E—V)/R,
vr={ —[RV/(E - V)lin,  for |in] < (E—V)/R, (1)
RiR—E, for ’LR>(E—V)/R,

where E is the Zener voltage and V = r1 E/(r1 +12) < E. If the small serial inductor
Lo is shorted, vr approaches to v and the above characteristic is to be hysteresis:

E, for v= -V,

(2)
—E, for v<V,

ip = %(v—l—H(v)), H(v) = {

where H(v) is switched from E to —F if v hits the threshold —V and vice versa as
shown in figure 2.

A theoretical evidence for such hysteresis behaviour is discussed in Saito (1990)
and Kennedy et al. (1991). Using the hysteresis characteristic, the circuit dynamics
are described by

d ‘ d . .
RCaEU—Rz—(v—i-H(v))» Laz_ —v +7i. (3)
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Figure 2. Hysteresis characteristic.

-1

Moreover, using the following-dimensionless variables and parameters:

gt oLlv y_ B _CR 1o P
“RC TV VvV S L’ R TV
Equation (3) is transformed into
d |z _|-1 1 x b | ch(zx) @)
dr' |y —a ab|||Y 1| 1=0b}]’

where h(z) is a normalized hysteresis defined by h(z) = E~'H(V'z). In this paper, we
consider the case where the above coefficient matrix has unstable complex eigenvalues
bw =+ jw, 6 > 0, w > 0. Then applying the transformation,

bw+1 1
r=wr, y=— o4 -y,
w w

we can transform equation (4) into the following Jordan form:

G- sl bl

where “denotes d/d7. This equation has three parameters (8, p, ¢) and they are given
by original three parameters (a, b, ¢):

1 _
5= ab _ be .= s (20_ (ab 1)bc)7

w  PT1Ty %w 1—b

where w? = a(1 — b) — 1(ab—1) > 0 and we assume p > 0. This equation can be
regarded as two linear equations on two half-spaces connected to each other by the
hysteresis switchings of h, where the half-spaces are

Sy ={(z,y,h)|x > -1,h=1}, S_={(z,y,h)|z <1 h=-1}. (6)

S, and S_ correspond to the upper and the lower branches of h(x), respectively. Note
that this Jordan form governs a certain class of circuits that includes one symmetric
hysteresis resistor (Saito 1990). Then the solution on Sy is given by

z(t)—p| 4| cosT sinT| [2(0)—p
[y(r)—q] - [—sinr COSTil [y(())—q]’ @)

Phil. Trans. R. Soc. Lond. A (1995)
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Th_ Th!

~

Figure 3. Hysteresis phase space.

for 0 < 7 < 74, where 7, is switching time when z hits the threshold and jumps to
S_. Note that 7 is identical with the clockwise angle from (z(0) — p,y(0) — ¢) to
(z(7) — p,y(7) — q). The solution on S_ is symmetric to this.

To derive the return map, we define some objects as shown in figure 3. Let Th_ =
{(%,y,h)]fﬂ = —-1,h = 1}? Th'/+ = {(xayah)lx = Lh = 1}3 L, = {(xayahﬂw =
p,h =1} and let Thy, Th’” and L], be symmetric to Th_, Th!, and L,, respectively.
Th_ and Th, are the left and the right hysteresis thresholds, respectively. Then
let points on these lines be represented by their y coordinate, e.g. y € L, implies
(p,y,1) € L,. Let L, = {(z,y,h)|6(x —p) +(y —q) = 0,h =1}, d = Th_ N Ly,
—m = Th/, N L, and let m be symmetric to —m, where z =0 on L,, d = q+6(p+1)
and —m = q+6(p—1). Here, note that the trajectory starting from d passes through
a point d; on Th!_ and it hits a point dy on Th_. On L,, there exist three points
D, M and « such that trajectories starting from them pass through three points d,
m € Th_ and —d; € Th_, respectively. These points will play an important role for
the return map. Note that d, > —d; guarantees that the trajectory starting from D
dose not diverge.

After these preparations, we try to define the return map. First, letting Ly =
{(z,y,h)|x = p,y > a,h = 1}, we consider a trajectory starting from a point yo > D
on Lg at 7 = 0. It rotates divergently around the equilibrium (p,q) € S, and
intersects L, at 7 = m. Let y; be the intersection. Next, we consider a trajectory
starting from a point yo < D on Ly at 7 = 0. This trajectory moves on S, and it
hits a point y, on Th_ and then it jumps to the same point y, on Th’ . Let 7 be
the hit time. Here, we consider three cases: p < 1,p=1and p > 1. If p <1 then L/
is the right-hand side of Th’_ and the trajectory starting from y, at 7 = 0 intersects
L, at some positive time 75. Let —y; be the intersection on L. If p = 1 then L/

Phil. Trans. R. Soc. Lond. A (1995)
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Chaos from a hysteresis and switched circuit 51

is identical with Th’ hence let —y; = y,. If p > 1 then L/ is the left-hand side of
Th' . In this case, we remark that there exists some point —y; € L/ such that the
trajectory starting from it at 7 = 0 passes through y, € Th’ at some positive time
7 = 13. That is, we can find the following route for yo < D:

Yo € Ly =y, € Th. — —y, € L. (8)

For the three cases of p, we note that the trajectory starting from —y; € L/ at 7 =0
is symmetric to the trajectory starting from y; € L, at 7 = 0. Consequently, we can
define one-dimensional return map F' from L4 to L, that transforms a point yg € Ly
to a point y; € L,. Then we have

Theorem 1. The return map can be formulated by

' F fa > D
F(’yo) _ 1<?J0), .OI' Yo = ) (9@)
Fs50 Fy(yo), for yo < D,
where
v = Fi(yo) = —"(yo — q) + q, (9b)
Yo =F3'(ya) = V(e — 0)* + (p+1)%e™*" +4¢, (9¢)
Ve +0)* + (1 —p)’Je’™ + ¢, for p<1,
Y1 = F3(Ya) = { —Ya, for p=1, (9d)
~VWa+@)*+ (p—1)%e ™ +gq, for p>1,
T1(Ya) = 37 — arctan 4= yla, (9e)
T2(ya) = 7 — arctan Yo + q’ (9f)
1-p
Ya T ¢
73(Ya) = 37 — arctan b1 (99)

Proof. We show only for F2_1. Let the trajectory starting from (p, yo, 1) € Lg hits
point (—1,y,,1) € Th_ at 7 = 11. Substituting

(Tlvpv y07_17ya) for (T71<0))y<0)7l‘(7—)?y(7—))

in equation (7), we obtain

_ . g 1
p—0p _ 0_6‘” COS T Sin 7y p - (10)
Yo — q sin 1y COS Ty Yo — q
Since 7, coincides with the clockwise angle from (0,40 — q) to (=1 — p,y, — q), 71 is
given by (9e). Also, the second row in equation (10) is equivalent to (9¢). [ |

Note that D and M are given by F, '(d) and Fy ' (m), respectively. We will use
equation (9¢) of F;' to prove chaos generation. Also, we will use the following
equation for numerical calculation of Fj:

Ya = (Yo — q)e’™ cos Ty + ¢, }

. (11)
fyo,m) = (yo — @)’ sinmy + 1+ p =0,

Phil. Trans. R. Soc. Lond. A (1995)
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5

F(yn) /

yr 1

Yr

5 a M D Yn 5
Figure 4. Return map for (a = 5,b = 0.25,¢ = 3.5).

where f gives the hit time 7; for given yy. f has unique solution in (0, %7r+ arctan 6)
and can be calculated by

m1(n+1) =7(n) — f(yo, 71 (n)) (g—f(yoﬁl(”))>_ )

where 71(0) = 2arctané. Since f is concave on (71(0), 7 + 7(0)) and is convex on
(11(0) — m,71(0)), this Newton and Raphson iteration must converge to the unique
solution. Next, differentiating (9b) to (9d) gives the following.

Theorem 2. Derivative of the return map is given by

—el7, for y= D,
dF
DF(y) = — = 1 (12)
dy dF3 d 1 i
E. f <D,
e )
where y, = Fy(y) and
d Yo — d
F_1 _ a e—&'rl’
Y [ A e syl
Ya — M o g
— e’ for p<1,
dF; \/[(ya +q)?+(p— 1)2]
dQy =41 for p=1,
‘ — Ya — M e 073 for p>1.

VIWa + )2+ (p—1)%]

Figure 4 shows an example of the return map. F is half-line for y = D, is concave
for y < D and F(M) < q is local maximum. If we can iterate F, the dynamics is
simplified into y,+1 = F(y,) and y, coincides with the original trajectory for every
twice hitting at (o, D) € Ly.

Figure 5 shows some examples of the return map and corresponding attractors.
In this figure, we can see that the first period doubling in the return map causes
symmetry breaking of the periodic attractor. Then the doubling cascade goes to
asymmetric chaos as b decreases. Since equation (5) is symmetric, the symmetry
breaking changes the number of attractor from one to two. Also, figure 6 shows

Phil. Trans. R. Soc. Lond. A (1995)
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Chaos from a hysteresis and switched circuit 53

Figure 5. Typical attractors for (a = 5,¢ = 4). (L = 200m, C = 10n, R = 10k, V = 0.7,
E = 2.7). (a) 01%-sps for b = 0.37 (r = 4.25k). (b) (01%)?-sps for b = 0.363 (r = 4.15k). (c)
(01?)%-sps for b = 0.3613 (r = 4.14k). (d) Chaos for b = 0.36 (r = 4.13k). (e) Double-screw
chaos for b=0.24 (r = 3.02k). (f) Single-screw chaos for b = 0.22 (r = 2.82k).

a one-parameter bifurcation diagram. The periodic attractors in figure 5 are in a
periodic window in figure 6 and other similar periodic windows exist. For small b,
such periodic window does not exist no longer and almost attractors are to be chaotic.

Phil. Trans. R. Soc. Lond. A (1995)
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0.4 }

024 ¥ .
-8 y 8

Figure 6. One-parameter bifurcation for (a = 5,¢c = 4).

Then the symmetric double-screw chaos changes to asymmetric single-screw chaos
as b decreases further. We analyse such phenomena in more detail.

3. Chaos and bifurcation
First, we define periodic point.

Definition 1. y, € Ly is said to be a periodic point with period ¢ if y, = F(y,)
and y, # F*(y,) for 0 < k < ¢, where F™ denotes n times composite of F. A periodic
point y, is said to be stable periodic point (spp) if [DF(y,)| < 1. Especially, spp with
|IDF(y,)| = 0 is said to be superstable. Also, a sequence of spp, {F(y,), ... L9y, }s
is said to be stable periodic sequence (sps). An sps that includes M is superstable.

Here, note that an sps that includes even number (respectively, odd number) of spp
in (v, D) implies existence of two asymmetric attractors (respectively, one symmetric
attractor). Then we symbolize an sps by applying the following for its spp y,:

2y.) = 0, for y, < D, (13)
¢ 1, for y, =2 D.

For example, spss in figure 5a--¢ are symbolized as (01%), (012)? and (01%)*, respec-
tively, where the power number implies the successive same symbol. Here, we consider
fundamental sps symbolized by 01?" and refer to it as 01%"-sps. F' exhibit (012")-sps
if there exits an spp y, such that

q>yg > F(yq) >...>D>F"(y,), F*"y,) =y, |DF*(y,)] <1 (14)

We can confirm this condition analytically by using equations (9) and (12). Es-
pecially, note that DF?" ! (y,) = e"*" DF(F*'(y,)) is satisfied in (14). Then the
period-doubling bifurcation set can be calculated by replacing the last inequality
in (14) with DF**!(y,) = —1. Similar calculation is possible for the successive

Phil. Trans. R. Soc. Lond. A (1995)
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0.4

0.2 k&
0 c 5
Figure 7. Bifurcation diagram for ¢ = 5. Labelled dotted line, crisis set; labelled broken
line, period-doubling bifurcation set; labelled solid line, tangent bifurcation set; o, p = 1; Iy,
F(yr) = yr; le, yo = M; lg, F3(D) = F?(D); and shaded region satisfies chaos generating
condition.

period-doubling bifurcation sets. Also, the tangent bifurcation set can be calculated
by replacing the last inequality in (14) with DF***!(y,) = 1.

As shown in figure 6, the sPs is born via tangent bifurcation and is to be chaotic
via period-doubling cascade as b decreases. Then, after the tangent bifurcation, there
exists one symmetric attractor and after the first period-doubling bifurcation, there
exist two asymmetric attractors. In figure 7, the labelled solid and broken curves
indicate parameter sets for tangent bifurcation and first period-doubling bifurcation,
respectively. Also, F' exhibits (012") periodic window if condition (14) or following
condition is satisfied:

F(M)> F3(M)>...>D > F>1(M) > M, }

>
FRRnEDFU L) > FOrDRL(AL) > P20t (y,), (15)

| D, for p<1,
HEVF ), for p>1,

where yy = min(F (D), F~'(a)) and F~ denote inverse of F. This (01?") periodic
window disappears via crisis (see figure 6). Also, the crisis set can be calculated
by replacing the second inequality in (15) with F2@n D+ (A1) = FErtD+L(Af) >
F=204 (yy) or F22n4D+L(Af) > FErD+L (V) = F=27+1(y,). In figure 7, the dotted
curves indicate parameter set for crisis. Namely, we can observe (01?") periodic win-
dow between solid curve and dotted curve. Note that the bifurcation sets accumulate
to the curve [, on which p = 1 is held. Then we have the following:

Theorem 3. Let yg = F(D), y;, be the smaller one of F(D_) and F*(D) and
let I = [yr,yr). F(I) C I is satisfied if F(y) > yr. We refer to I as an invariant
interval of F'.

Proof. This theorem is derived directly from fundamental characteristics of the
return map: F (M) is the unique extremum for y < D, F' is half-line for y > D and
F(M) < q. [ |

In figure 7, F(yr) = yr. is satisfied on curve [, and I is the invariant interval under
this curve. And existence of bifurcation sets upper the curve [, implies that domain

Phil. Trans. R. Soc. Lond. A (1995)
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of attraction to the sps is not simple: some initial value converges to the sps and
some initial value causes divergence (see figure 6). Then the following is basic to
prove chaos generation.

Theorem 4. F(y) is exactly convex for M < y < D.

Proof. We show only for p > 1. Letting G(y) = In(—=DF(y)) for M < y < D and
differentiating it, we obtain
G _ (1+6%)(p— 1) (1+8*)(p+1)? dy.

dy [ —m)((a+0?+(@-1?  (d-5)((ya—a)?+@+1)?)] dy’
Since dy,/dy > 0 and since M < y < D is equivalent to m < y, < d, dG/dy =
D?*F(y)/DF(y) > 0 is satisfied, where D?F(y) denotes the second derivative of F.
Since DF(y) is negative for M <y < D, D*F(y) is also negative. [ |

Then we obtain the following from theorems 3 and 4:
Theorem 5. F(I) C I and |DF(y)| > 1 on I are satisfied if
DF(yr) < —1. (16)

Referring to Li et al. (1978), |DF(y)| > 1 for F : I — I guarantees that F
is ergodic and has positive Lyapunov exponent, hence F' exhibits chaos. Since y,
is given by F(D_) or F?(D) and since F and DF are given by analytic formula
(9) and (12), respectively, the chaos generating condition (16) is described by three
parameters (6,p,q) or (a,b,c). This condition is satisfied in the shaded region in
figure 7. Note that the condition (16) is ‘sufficient’ to chaos generation and we have
observed various chaotic attractors without this condition. In figure 7, the curve I,
implies y;, = M and almost attractors are to be chaotic under this curve. Also, the
curve /4 in the shaded region implies F3(D) = F?(D). Under this curve, the following
is satisfied:

F3(D) < F*(D) < D. (17)
If (17) is satisfied and if an orbit enters into Iy, = [y, D) then it must hit I, even
times by it goes out of I;, hence two asymmetric single-screw attractors as figure 5 f

exist. The system exhibits symmetric double-screw attractor upper the curve l;. That
is, F3(D) = F*(D) gives the boundary between double and single-screw chaos.

4. Conclusion

We have analysed chaos and fundamental bifurcations from a simple hysteresis
chaos generator. Deriving one-dimensional return map rigorously, we give a suffi-
cient condition for chaos generation and give fundamental bifurcation sets. Some
of the theoretical results are verified by laboratory experiments. Roughly speaking,
stretching by negative resistor and folding by hysteresis are basic for chaos generation
form the circuit. Also hitting velocity (&) at the threshold (Th_ or T'h, ) changes the
slope of the return map and causes periodic window. Then the constrained dynamics
on two switched plane simplify the rigorous analysis. Now we are trying to develop
the theoretical result into higher-dimensional cases. On the other hand (Hasler et al.
1993) has begun to apply our circuit to secure communication. We also try to ap-
ply the circuit for control of chaos, synchronization of chaos and related engineering
systems.
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Finally, we thank L. O. Chua, H. Kawakami, M. Hasler, W. Schwarz and K. Mitsubori for
exciting discussions.
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